0byt3m1n1
Path:
/
data
/
0
/
0
/
16
/
156
/
16482
/
user
/
16848
/
cgi-bin
/
[
Home
]
File: MoonPhase.pm
package Astro::MoonPhase; use strict; use vars qw($VERSION @ISA @EXPORT @EXPORT_OK); require Exporter; @ISA = qw(Exporter); @EXPORT = qw(phase phasehunt); $VERSION = '0.52'; use Time::Local qw(timegm); use vars qw ( $Epoch $Elonge $Elongp $Eccent $Sunsmax $Sunangsiz $Mmlong $Mmlongp $Mlnode $Minc $Mecc $Mangsiz $Msmax $Mparallax $Synmonth $Pi ); # Astronomical constants. $Epoch = 2444238.5; # 1980 January 0.0 # Constants defining the Sun's apparent orbit. $Elonge = 278.833540; # ecliptic longitude of the Sun at epoch 1980.0 $Elongp = 282.596403; # ecliptic longitude of the Sun at perigee $Eccent = 0.016718; # eccentricity of Earth's orbit $Sunsmax = 1.495985e8; # semi-major axis of Earth's orbit, km $Sunangsiz = 0.533128; # sun's angular size, degrees, at semi-major axis distance # Elements of the Moon's orbit, epoch 1980.0. $Mmlong = 64.975464; # moon's mean longitude at the epoch $Mmlongp = 349.383063; # mean longitude of the perigee at the epoch $Mlnode = 151.950429; # mean longitude of the node at the epoch $Minc = 5.145396; # inclination of the Moon's orbit $Mecc = 0.054900; # eccentricity of the Moon's orbit $Mangsiz = 0.5181; # moon's angular size at distance a from Earth $Msmax = 384401.0; # semi-major axis of Moon's orbit in km $Mparallax = 0.9507; # parallax at distance a from Earth $Synmonth = 29.53058868; # synodic month (new Moon to new Moon) # Properties of the Earth. $Pi = 3.14159265358979323846; # assume not near black hole nor in Tennessee # Handy mathematical functions. sub sgn { return (($_[0] < 0) ? -1 : ($_[0] > 0 ? 1 : 0)); } # extract sign sub fixangle { return ($_[0] - 360.0 * (floor($_[0] / 360.0))); } # fix angle sub torad { return ($_[0] * ($Pi / 180.0)); } # deg->rad sub todeg { return ($_[0] * (180.0 / $Pi)); } # rad->deg sub dsin { return (sin(torad($_[0]))); } # sin from deg sub dcos { return (cos(torad($_[0]))); } # cos from deg sub tan { return sin($_[0])/cos($_[0]); } sub asin { return ($_[0]<-1 or $_[0]>1) ? undef : atan2($_[0],sqrt(1-$_[0]*$_[0])); } sub atan { if ($_[0]==0) { return 0; } elsif ($_[0]>0) { return atan2(sqrt(1+$_[0]*$_[0]),sqrt(1+1/($_[0]*$_[0]))); } else { return -atan2(sqrt(1+$_[0]*$_[0]),sqrt(1+1/($_[0]*$_[0]))); } } sub floor { my $val = shift; my $neg = $val < 0; my $asint = int($val); my $exact = $val == $asint; return ($exact ? $asint : $neg ? $asint - 1 : $asint); } # jtime - convert internal date and time to astronomical Julian # time (i.e. Julian date plus day fraction) sub jtime { my $t = shift; my ($julian); $julian = ($t / 86400) + 2440587.5; # (seconds /(seconds per day)) + julian date of epoch return ($julian); } # jdaytosecs - convert Julian date to a UNIX epoch sub jdaytosecs { my $jday = shift; my $stamp; $stamp = ($jday - 2440587.5)*86400; # (juliandate - jdate of unix epoch)*(seconds per julian day) return($stamp); } # jyear - convert Julian date to year, month, day, which are # returned via integer pointers to integers sub jyear { my ($td, $yy, $mm, $dd) = @_; my ($z, $f, $a, $alpha, $b, $c, $d, $e); $td += 0.5; # astronomical to civil $z = floor($td); $f = $td - $z; if ($z < 2299161.0) { $a = $z; } else { $alpha = floor(($z - 1867216.25) / 36524.25); $a = $z + 1 + $alpha - floor($alpha / 4); } $b = $a + 1524; $c = floor(($b - 122.1) / 365.25); $d = floor(365.25 * $c); $e = floor(($b - $d) / 30.6001); $$dd = $b - $d - floor(30.6001 * $e) + $f; $$mm = $e < 14 ? $e - 1 : $e - 13; $$yy = $$mm > 2 ? $c - 4716 : $c - 4715; } ## meanphase -- Calculates time of the mean new Moon for a given ## base date. This argument K to this function is the ## precomputed synodic month index, given by: ## ## K = (year - 1900) * 12.3685 ## ## where year is expressed as a year and fractional year. sub meanphase { my ($sdate, $k) = @_; my ($t, $t2, $t3, $nt1); ## Time in Julian centuries from 1900 January 0.5 $t = ($sdate - 2415020.0) / 36525; $t2 = $t * $t; ## Square for frequent use $t3 = $t2 * $t; ## Cube for frequent use $nt1 = 2415020.75933 + $Synmonth * $k + 0.0001178 * $t2 - 0.000000155 * $t3 + 0.00033 * dsin(166.56 + 132.87 * $t - 0.009173 * $t2); return ($nt1); } # truephase - given a K value used to determine the mean phase of the # new moon, and a phase selector (0.0, 0.25, 0.5, 0.75), # obtain the true, corrected phase time sub truephase { my ($k, $phase) = @_; my ($t, $t2, $t3, $pt, $m, $mprime, $f); my $apcor = 0; $k += $phase; # add phase to new moon time $t = $k / 1236.85; # time in Julian centuries from # 1900 January 0.5 $t2 = $t * $t; # square for frequent use $t3 = $t2 * $t; # cube for frequent use # mean time of phase */ $pt = 2415020.75933 + $Synmonth * $k + 0.0001178 * $t2 - 0.000000155 * $t3 + 0.00033 * dsin(166.56 + 132.87 * $t - 0.009173 * $t2); # Sun's mean anomaly $m = 359.2242 + 29.10535608 * $k - 0.0000333 * $t2 - 0.00000347 * $t3; # Moon's mean anomaly $mprime = 306.0253 + 385.81691806 * $k + 0.0107306 * $t2 + 0.00001236 * $t3; # Moon's argument of latitude $f = 21.2964 + 390.67050646 * $k - 0.0016528 * $t2 - 0.00000239 * $t3; if (($phase < 0.01) || (abs($phase - 0.5) < 0.01)) { # Corrections for New and Full Moon. $pt += (0.1734 - 0.000393 * $t) * dsin($m) + 0.0021 * dsin(2 * $m) - 0.4068 * dsin($mprime) + 0.0161 * dsin(2 * $mprime) - 0.0004 * dsin(3 * $mprime) + 0.0104 * dsin(2 * $f) - 0.0051 * dsin($m + $mprime) - 0.0074 * dsin($m - $mprime) + 0.0004 * dsin(2 * $f + $m) - 0.0004 * dsin(2 * $f - $m) - 0.0006 * dsin(2 * $f + $mprime) + 0.0010 * dsin(2 * $f - $mprime) + 0.0005 * dsin($m + 2 * $mprime); $apcor = 1; } elsif ((abs($phase - 0.25) < 0.01 || (abs($phase - 0.75) < 0.01))) { $pt += (0.1721 - 0.0004 * $t) * dsin($m) + 0.0021 * dsin(2 * $m) - 0.6280 * dsin($mprime) + 0.0089 * dsin(2 * $mprime) - 0.0004 * dsin(3 * $mprime) + 0.0079 * dsin(2 * $f) - 0.0119 * dsin($m + $mprime) - 0.0047 * dsin($m - $mprime) + 0.0003 * dsin(2 * $f + $m) - 0.0004 * dsin(2 * $f - $m) - 0.0006 * dsin(2 * $f + $mprime) + 0.0021 * dsin(2 * $f - $mprime) + 0.0003 * dsin($m + 2 * $mprime) + 0.0004 * dsin($m - 2 * $mprime) - 0.0003 * dsin(2 * $m + $mprime); if ($phase < 0.5) { # First quarter correction. $pt += 0.0028 - 0.0004 * dcos($m) + 0.0003 * dcos($mprime); } else { # Last quarter correction. $pt += -0.0028 + 0.0004 * dcos($m) - 0.0003 * dcos($mprime); } $apcor = 1; } if (!$apcor) { die "truephase() called with invalid phase selector ($phase).\n"; } return ($pt); } # phasehunt - find time of phases of the moon which surround the current # date. Five phases are found, starting and ending with the # new moons which bound the current lunation sub phasehunt { my $sdate = jtime(shift || time()); my ($adate, $k1, $k2, $nt1, $nt2); my ($yy, $mm, $dd); $adate = $sdate - 45; jyear($adate, \$yy, \$mm, \$dd); $k1 = floor(($yy + (($mm - 1) * (1.0 / 12.0)) - 1900) * 12.3685); $adate = $nt1 = meanphase($adate, $k1); while (1) { $adate += $Synmonth; $k2 = $k1 + 1; $nt2 = meanphase($adate, $k2); if (($nt1 <= $sdate) && ($nt2 > $sdate)) { last; } $nt1 = $nt2; $k1 = $k2; } return ( jdaytosecs(truephase($k1, 0.0)), jdaytosecs(truephase($k1, 0.25)), jdaytosecs(truephase($k1, 0.5)), jdaytosecs(truephase($k1, 0.75)), jdaytosecs(truephase($k2, 0.0)) ); } # kepler - solve the equation of Kepler sub kepler { my ($m, $ecc) = @_; my ($e, $delta); my $EPSILON = 1e-6; $m = torad($m); $e = $m; do { $delta = $e - $ecc * sin($e) - $m; $e -= $delta / (1 - $ecc * cos($e)); } while (abs($delta) > $EPSILON); return ($e); } # phase - calculate phase of moon as a fraction: # # The argument is the time for which the phase is requested, # expressed as a Julian date and fraction. Returns the terminator # phase angle as a percentage of a full circle (i.e., 0 to 1), # and stores into pointer arguments the illuminated fraction of # the Moon's disc, the Moon's age in days and fraction, the # distance of the Moon from the centre of the Earth, and the # angular diameter subtended by the Moon as seen by an observer # at the centre of the Earth. sub phase { my $pdate = jtime(shift || time()); my $pphase; # illuminated fraction my $mage; # age of moon in days my $dist; # distance in kilometres my $angdia; # angular diameter in degrees my $sudist; # distance to Sun my $suangdia; # sun's angular diameter my ($Day, $N, $M, $Ec, $Lambdasun, $ml, $MM, $MN, $Ev, $Ae, $A3, $MmP, $mEc, $A4, $lP, $V, $lPP, $NP, $y, $x, $Lambdamoon, $BetaM, $MoonAge, $MoonPhase, $MoonDist, $MoonDFrac, $MoonAng, $MoonPar, $F, $SunDist, $SunAng, $mpfrac); # Calculation of the Sun's position. $Day = $pdate - $Epoch; # date within epoch $N = fixangle((360 / 365.2422) * $Day); # mean anomaly of the Sun $M = fixangle($N + $Elonge - $Elongp); # convert from perigee # co-ordinates to epoch 1980.0 $Ec = kepler($M, $Eccent); # solve equation of Kepler $Ec = sqrt((1 + $Eccent) / (1 - $Eccent)) * tan($Ec / 2); $Ec = 2 * todeg(atan($Ec)); # true anomaly $Lambdasun = fixangle($Ec + $Elongp); # Sun's geocentric ecliptic # longitude # Orbital distance factor. $F = ((1 + $Eccent * cos(torad($Ec))) / (1 - $Eccent * $Eccent)); $SunDist = $Sunsmax / $F; # distance to Sun in km $SunAng = $F * $Sunangsiz; # Sun's angular size in degrees # Calculation of the Moon's position. # Moon's mean longitude. $ml = fixangle(13.1763966 * $Day + $Mmlong); # Moon's mean anomaly. $MM = fixangle($ml - 0.1114041 * $Day - $Mmlongp); # Moon's ascending node mean longitude. $MN = fixangle($Mlnode - 0.0529539 * $Day); # Evection. $Ev = 1.2739 * sin(torad(2 * ($ml - $Lambdasun) - $MM)); # Annual equation. $Ae = 0.1858 * sin(torad($M)); # Correction term. $A3 = 0.37 * sin(torad($M)); # Corrected anomaly. $MmP = $MM + $Ev - $Ae - $A3; # Correction for the equation of the centre. $mEc = 6.2886 * sin(torad($MmP)); # Another correction term. $A4 = 0.214 * sin(torad(2 * $MmP)); # Corrected longitude. $lP = $ml + $Ev + $mEc - $Ae + $A4; # Variation. $V = 0.6583 * sin(torad(2 * ($lP - $Lambdasun))); # True longitude. $lPP = $lP + $V; # Corrected longitude of the node. $NP = $MN - 0.16 * sin(torad($M)); # Y inclination coordinate. $y = sin(torad($lPP - $NP)) * cos(torad($Minc)); # X inclination coordinate. $x = cos(torad($lPP - $NP)); # Ecliptic longitude. $Lambdamoon = todeg(atan2($y, $x)); $Lambdamoon += $NP; # Ecliptic latitude. $BetaM = todeg(asin(sin(torad($lPP - $NP)) * sin(torad($Minc)))); # Calculation of the phase of the Moon. # Age of the Moon in degrees. $MoonAge = $lPP - $Lambdasun; # Phase of the Moon. $MoonPhase = (1 - cos(torad($MoonAge))) / 2; # Calculate distance of moon from the centre of the Earth. $MoonDist = ($Msmax * (1 - $Mecc * $Mecc)) / (1 + $Mecc * cos(torad($MmP + $mEc))); # Calculate Moon's angular diameter. $MoonDFrac = $MoonDist / $Msmax; $MoonAng = $Mangsiz / $MoonDFrac; # Calculate Moon's parallax. $MoonPar = $Mparallax / $MoonDFrac; $pphase = $MoonPhase; $mage = $Synmonth * (fixangle($MoonAge) / 360.0); $dist = $MoonDist; $angdia = $MoonAng; $sudist = $SunDist; $suangdia = $SunAng; $mpfrac = fixangle($MoonAge) / 360.0; return wantarray ? ( $mpfrac, $pphase, $mage, $dist, $angdia, $sudist,$suangdia ) : $mpfrac; } 1; __END__ =head1 NAME MoonPhase - Information about the phase of the Moon =head1 SYNOPSIS use Astro::MoonPhase; ( $MoonPhase, $MoonIllum, $MoonAge, $MoonDist, $MoonAng, $SunDist, $SunAng ) = phase($seconds_since_1970); @phases = phasehunt($seconds_since_1970); =head1 DESCRIPTION MoonPhase calculates information about the phase of the moon at a given time. =head1 FUNCTIONS =head2 phase() ( $MoonPhase, $MoonIllum, $MoonAge, $MoonDist, $MoonAng, $SunDist, $SunAng ) = phase($seconds_since_1970); $MoonPhase = phase($seconds_since_1970); The argument is the time for which the phase is requested, expressed as a time returned by the C<time> function. If C<$seconds_since_1970> is omitted, it does C<phase(time)>. Return value in scalar context is $MoonPhase, the terminator phase angle as a percentage of a full circle (i.e., 0 to 1). =over 4 =item B<Return values in array context:> =item $MoonPhase: the terminator phase angle as a percentage of a full circle (i.e., 0 to 1) =item $MoonIllum: the illuminated fraction of the Moon's disc =item $MoonAge: the Moon's age in days and fraction =item $MoonDist: the distance of the Moon from the centre of the Earth =item $MoonAng: the angular diameter subtended by the Moon as seen by an observer at the centre of the Earth. =item $SunDist: the distance from the Sun in km =item $SunAng: the angular size of Sun in degrees =back Example: ( $MoonPhase, $MoonIllum, $MoonAge, $MoonDist, $MoonAng, $SunDist, $SunAng ) = phase(); print "MoonPhase = $MoonPhase\n"; print "MoonIllum = $MoonIllum\n"; print "MoonAge = $MoonAge\n"; print "MoonDist = $MoonDist\n"; print "MoonAng = $MoonAng\n"; print "SunDist = $SunDist\n"; print "SunAng = $SunAng\n"; could print something like this: MoonPhase = 0.598939375319023 MoonIllum = 0.906458030827876 MoonAge = 17.6870323368022 MoonDist = 372479.357420033 MoonAng = 0.534682403555093 SunDist = 152078368.820205 SunAng = 0.524434538105092 =head2 phasehunt() @phases = phasehunt($seconds_since_1970); Finds time of phases of the moon which surround the given date. Five phases are found, starting and ending with the new moons which bound the current lunation. The argument is the time, expressed as a time returned by the C<time> function. If C<$seconds_since_1970> is omitted, it does C<phasehunt(time)>. Example: @phases = phasehunt(); print "New Moon = ", scalar(localtime($phases[0])), "\n"; print "First quarter = ", scalar(localtime($phases[1])), "\n"; print "Full moon = ", scalar(localtime($phases[2])), "\n"; print "Last quarter = ", scalar(localtime($phases[3])), "\n"; print "New Moon = ", scalar(localtime($phases[4])), "\n"; could print something like this: New Moon = Wed Jun 24 06:51:47 1998 First quarter = Wed Jul 1 21:42:19 1998 Full moon = Thu Jul 9 19:02:47 1998 Last quarter = Thu Jul 16 18:15:18 1998 New Moon = Thu Jul 23 16:45:01 1998 =head1 ABOUT THE ALGORITHMS The algorithms used in this program to calculate the positions of Sun and Moon as seen from the Earth are given in the book I<Practical Astronomy With Your Calculator> by B<Peter Duffett-Smith, Second Edition, Cambridge University Press, 1981>. Ignore the word "Calculator" in the title; this is an essential reference if you're interested in developing software which calculates planetary positions, orbits, eclipses, and the like. If you're interested in pursuing such programming, you should also obtain: I<Astronomical Formulae for Calculators> by B<Jean Meeus, Third Edition, Willmann-Bell, 1985>. A must-have. I<Planetary Programs and Tables from -4000 to +2800> by B<Pierre Bretagnon and Jean-Louis Simon, Willmann-Bell, 1986>. If you want the utmost (outside of JPL) accuracy for the planets, it's here. I<Celestial BASIC> by B<Eric Burgess, Revised Edition, Sybex, 1985>. Very cookbook oriented, and many of the algorithms are hard to dig out of the turgid BASIC code, but you'll probably want it anyway. Many of these references can be obtained from Willmann-Bell, P.O. Box 35025, Richmond, VA 23235, USA. Phone: (804) 320-7016. In addition to their own publications, they stock most of the standard references for mathematical and positional astronomy. =head1 LICENCE This program is in the public domain: "Do what thou wilt shall be the whole of the law". =head1 AUTHORS The moontool.c Release 2.0: A Moon for the Sun Designed and implemented by John Walker in December 1987, revised and updated in February of 1988. Initial Perl transcription: Raino Pikkarainen, 1998 raino.pikkarainen@saunalahti.fi The moontool.c Release 2.4: Major enhancements by Ron Hitchens, 1989 Revisions: Brett Hamilton http://simple.be/ Bug fix, 2003 Second transcription and bugfixes, 2004