0byt3m1n1
Path:
/
data
/
applications
/
aps.bak
/
phprojekt
/
6.0.6-0
/
standard
/
htdocs
/
htdocs
/
dojo
/
dojox
/
sql
/
[
Home
]
File: _crypto.js
/* Copyright (c) 2004-2010, The Dojo Foundation All Rights Reserved. Available via Academic Free License >= 2.1 OR the modified BSD license. see: http://dojotoolkit.org/license for details */ if(!dojo._hasResource["dojox.sql._crypto"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code. dojo._hasResource["dojox.sql._crypto"] = true; dojo.provide("dojox.sql._crypto"); dojo.mixin(dojox.sql._crypto, { // summary: dojox.sql cryptography code // description: // Taken from http://www.movable-type.co.uk/scripts/aes.html by // Chris Veness (CLA signed); adapted for Dojo and Google Gears Worker Pool // by Brad Neuberg, bkn3@columbia.edu // // _POOL_SIZE: // Size of worker pool to create to help with crypto _POOL_SIZE: 100, encrypt: function(plaintext, password, callback){ // summary: // Use Corrected Block TEA to encrypt plaintext using password // (note plaintext & password must be strings not string objects). // Results will be returned to the 'callback' asychronously. this._initWorkerPool(); var msg ={plaintext: plaintext, password: password}; msg = dojo.toJson(msg); msg = "encr:" + String(msg); this._assignWork(msg, callback); }, decrypt: function(ciphertext, password, callback){ // summary: // Use Corrected Block TEA to decrypt ciphertext using password // (note ciphertext & password must be strings not string objects). // Results will be returned to the 'callback' asychronously. this._initWorkerPool(); var msg = {ciphertext: ciphertext, password: password}; msg = dojo.toJson(msg); msg = "decr:" + String(msg); this._assignWork(msg, callback); }, _initWorkerPool: function(){ // bugs in Google Gears prevents us from dynamically creating // and destroying workers as we need them -- the worker // pool functionality stops working after a number of crypto // cycles (probably related to a memory leak in Google Gears). // this is too bad, since it results in much simpler code. // instead, we have to create a pool of workers and reuse them. we // keep a stack of 'unemployed' Worker IDs that are currently not working. // if a work request comes in, we pop off the 'unemployed' stack // and put them to work, storing them in an 'employed' hashtable, // keyed by their Worker ID with the value being the callback function // that wants the result. when an employed worker is done, we get // a message in our 'manager' which adds this worker back to the // unemployed stack and routes the result to the callback that // wanted it. if all the workers were employed in the past but // more work needed to be done (i.e. it's a tight labor pool ;) // then the work messages are pushed onto // a 'handleMessage' queue as an object tuple{msg: msg, callback: callback} if(!this._manager){ try{ this._manager = google.gears.factory.create("beta.workerpool", "1.0"); this._unemployed = []; this._employed ={}; this._handleMessage = []; var self = this; this._manager.onmessage = function(msg, sender){ // get the callback necessary to serve this result var callback = self._employed["_" + sender]; // make this worker unemployed self._employed["_" + sender] = undefined; self._unemployed.push("_" + sender); // see if we need to assign new work // that was queued up needing to be done if(self._handleMessage.length){ var handleMe = self._handleMessage.shift(); self._assignWork(handleMe.msg, handleMe.callback); } // return results callback(msg); } var workerInit = "function _workerInit(){" + "gearsWorkerPool.onmessage = " + String(this._workerHandler) + ";" + "}"; var code = workerInit + " _workerInit();"; // create our worker pool for(var i = 0; i < this._POOL_SIZE; i++){ this._unemployed.push("_" + this._manager.createWorker(code)); } }catch(exp){ throw exp.message||exp; } } }, _assignWork: function(msg, callback){ // can we immediately assign this work? if(!this._handleMessage.length && this._unemployed.length){ // get an unemployed worker var workerID = this._unemployed.shift().substring(1); // remove _ // list this worker as employed this._employed["_" + workerID] = callback; // do the worke this._manager.sendMessage(msg, parseInt(workerID,10)); }else{ // we have to queue it up this._handleMessage ={msg: msg, callback: callback}; } }, _workerHandler: function(msg, sender){ /* Begin AES Implementation */ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ // Sbox is pre-computed multiplicative inverse in GF(2^8) used in SubBytes and KeyExpansion [§5.1.1] var Sbox = [0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, 0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0, 0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15, 0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75, 0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84, 0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf, 0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8, 0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2, 0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73, 0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb, 0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79, 0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08, 0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a, 0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e, 0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf, 0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16]; // Rcon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [§5.2] var Rcon = [ [0x00, 0x00, 0x00, 0x00], [0x01, 0x00, 0x00, 0x00], [0x02, 0x00, 0x00, 0x00], [0x04, 0x00, 0x00, 0x00], [0x08, 0x00, 0x00, 0x00], [0x10, 0x00, 0x00, 0x00], [0x20, 0x00, 0x00, 0x00], [0x40, 0x00, 0x00, 0x00], [0x80, 0x00, 0x00, 0x00], [0x1b, 0x00, 0x00, 0x00], [0x36, 0x00, 0x00, 0x00] ]; /* * AES Cipher function: encrypt 'input' with Rijndael algorithm * * takes byte-array 'input' (16 bytes) * 2D byte-array key schedule 'w' (Nr+1 x Nb bytes) * * applies Nr rounds (10/12/14) using key schedule w for 'add round key' stage * * returns byte-array encrypted value (16 bytes) */ function Cipher(input, w) { // main Cipher function [§5.1] var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES) var Nr = w.length/Nb - 1; // no of rounds: 10/12/14 for 128/192/256-bit keys var state = [[],[],[],[]]; // initialise 4xNb byte-array 'state' with input [§3.4] for (var i=0; i<4*Nb; i++) state[i%4][Math.floor(i/4)] = input[i]; state = AddRoundKey(state, w, 0, Nb); for (var round=1; round<Nr; round++) { state = SubBytes(state, Nb); state = ShiftRows(state, Nb); state = MixColumns(state, Nb); state = AddRoundKey(state, w, round, Nb); } state = SubBytes(state, Nb); state = ShiftRows(state, Nb); state = AddRoundKey(state, w, Nr, Nb); var output = new Array(4*Nb); // convert state to 1-d array before returning [§3.4] for (var i=0; i<4*Nb; i++) output[i] = state[i%4][Math.floor(i/4)]; return output; } function SubBytes(s, Nb) { // apply SBox to state S [§5.1.1] for (var r=0; r<4; r++) { for (var c=0; c<Nb; c++) s[r][c] = Sbox[s[r][c]]; } return s; } function ShiftRows(s, Nb) { // shift row r of state S left by r bytes [§5.1.2] var t = new Array(4); for (var r=1; r<4; r++) { for (var c=0; c<4; c++) t[c] = s[r][(c+r)%Nb]; // shift into temp copy for (var c=0; c<4; c++) s[r][c] = t[c]; // and copy back } // note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES): return s; // see fp.gladman.plus.com/cryptography_technology/rijndael/aes.spec.311.pdf } function MixColumns(s, Nb) { // combine bytes of each col of state S [§5.1.3] for (var c=0; c<4; c++) { var a = new Array(4); // 'a' is a copy of the current column from 's' var b = new Array(4); // 'b' is a•{02} in GF(2^8) for (var i=0; i<4; i++) { a[i] = s[i][c]; b[i] = s[i][c]&0x80 ? s[i][c]<<1 ^ 0x011b : s[i][c]<<1; } // a[n] ^ b[n] is a•{03} in GF(2^8) s[0][c] = b[0] ^ a[1] ^ b[1] ^ a[2] ^ a[3]; // 2*a0 + 3*a1 + a2 + a3 s[1][c] = a[0] ^ b[1] ^ a[2] ^ b[2] ^ a[3]; // a0 * 2*a1 + 3*a2 + a3 s[2][c] = a[0] ^ a[1] ^ b[2] ^ a[3] ^ b[3]; // a0 + a1 + 2*a2 + 3*a3 s[3][c] = a[0] ^ b[0] ^ a[1] ^ a[2] ^ b[3]; // 3*a0 + a1 + a2 + 2*a3 } return s; } function AddRoundKey(state, w, rnd, Nb) { // xor Round Key into state S [§5.1.4] for (var r=0; r<4; r++) { for (var c=0; c<Nb; c++) state[r][c] ^= w[rnd*4+c][r]; } return state; } function KeyExpansion(key) { // generate Key Schedule (byte-array Nr+1 x Nb) from Key [§5.2] var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES) var Nk = key.length/4 // key length (in words): 4/6/8 for 128/192/256-bit keys var Nr = Nk + 6; // no of rounds: 10/12/14 for 128/192/256-bit keys var w = new Array(Nb*(Nr+1)); var temp = new Array(4); for (var i=0; i<Nk; i++) { var r = [key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]]; w[i] = r; } for (var i=Nk; i<(Nb*(Nr+1)); i++) { w[i] = new Array(4); for (var t=0; t<4; t++) temp[t] = w[i-1][t]; if (i % Nk == 0) { temp = SubWord(RotWord(temp)); for (var t=0; t<4; t++) temp[t] ^= Rcon[i/Nk][t]; } else if (Nk > 6 && i%Nk == 4) { temp = SubWord(temp); } for (var t=0; t<4; t++) w[i][t] = w[i-Nk][t] ^ temp[t]; } return w; } function SubWord(w) { // apply SBox to 4-byte word w for (var i=0; i<4; i++) w[i] = Sbox[w[i]]; return w; } function RotWord(w) { // rotate 4-byte word w left by one byte w[4] = w[0]; for (var i=0; i<4; i++) w[i] = w[i+1]; return w; } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* * Use AES to encrypt 'plaintext' with 'password' using 'nBits' key, in 'Counter' mode of operation * - see http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf * for each block * - outputblock = cipher(counter, key) * - cipherblock = plaintext xor outputblock */ function AESEncryptCtr(plaintext, password, nBits) { if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys // for this example script, generate the key by applying Cipher to 1st 16/24/32 chars of password; // for real-world applications, a more secure approach would be to hash the password e.g. with SHA-1 var nBytes = nBits/8; // no bytes in key var pwBytes = new Array(nBytes); for (var i=0; i<nBytes; i++) pwBytes[i] = password.charCodeAt(i) & 0xff; var key = Cipher(pwBytes, KeyExpansion(pwBytes)); key = key.concat(key.slice(0, nBytes-16)); // key is now 16/24/32 bytes long // initialise counter block (NIST SP800-38A §B.2): millisecond time-stamp for nonce in 1st 8 bytes, // block counter in 2nd 8 bytes var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES var counterBlock = new Array(blockSize); // block size fixed at 16 bytes / 128 bits (Nb=4) for AES var nonce = (new Date()).getTime(); // milliseconds since 1-Jan-1970 // encode nonce in two stages to cater for JavaScript 32-bit limit on bitwise ops for (var i=0; i<4; i++) counterBlock[i] = (nonce >>> i*8) & 0xff; for (var i=0; i<4; i++) counterBlock[i+4] = (nonce/0x100000000 >>> i*8) & 0xff; // generate key schedule - an expansion of the key into distinct Key Rounds for each round var keySchedule = KeyExpansion(key); var blockCount = Math.ceil(plaintext.length/blockSize); var ciphertext = new Array(blockCount); // ciphertext as array of strings for (var b=0; b<blockCount; b++) { // set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) // again done in two stages for 32-bit ops for (var c=0; c<4; c++) counterBlock[15-c] = (b >>> c*8) & 0xff; for (var c=0; c<4; c++) counterBlock[15-c-4] = (b/0x100000000 >>> c*8) var cipherCntr = Cipher(counterBlock, keySchedule); // -- encrypt counter block -- // calculate length of final block: var blockLength = b<blockCount-1 ? blockSize : (plaintext.length-1)%blockSize+1; var ct = ''; for (var i=0; i<blockLength; i++) { // -- xor plaintext with ciphered counter byte-by-byte -- var plaintextByte = plaintext.charCodeAt(b*blockSize+i); var cipherByte = plaintextByte ^ cipherCntr[i]; ct += String.fromCharCode(cipherByte); } // ct is now ciphertext for this block ciphertext[b] = escCtrlChars(ct); // escape troublesome characters in ciphertext } // convert the nonce to a string to go on the front of the ciphertext var ctrTxt = ''; for (var i=0; i<8; i++) ctrTxt += String.fromCharCode(counterBlock[i]); ctrTxt = escCtrlChars(ctrTxt); // use '-' to separate blocks, use Array.join to concatenate arrays of strings for efficiency return ctrTxt + '-' + ciphertext.join('-'); } /* * Use AES to decrypt 'ciphertext' with 'password' using 'nBits' key, in Counter mode of operation * * for each block * - outputblock = cipher(counter, key) * - cipherblock = plaintext xor outputblock */ function AESDecryptCtr(ciphertext, password, nBits) { if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys var nBytes = nBits/8; // no bytes in key var pwBytes = new Array(nBytes); for (var i=0; i<nBytes; i++) pwBytes[i] = password.charCodeAt(i) & 0xff; var pwKeySchedule = KeyExpansion(pwBytes); var key = Cipher(pwBytes, pwKeySchedule); key = key.concat(key.slice(0, nBytes-16)); // key is now 16/24/32 bytes long var keySchedule = KeyExpansion(key); ciphertext = ciphertext.split('-'); // split ciphertext into array of block-length strings // recover nonce from 1st element of ciphertext var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES var counterBlock = new Array(blockSize); var ctrTxt = unescCtrlChars(ciphertext[0]); for (var i=0; i<8; i++) counterBlock[i] = ctrTxt.charCodeAt(i); var plaintext = new Array(ciphertext.length-1); for (var b=1; b<ciphertext.length; b++) { // set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) for (var c=0; c<4; c++) counterBlock[15-c] = ((b-1) >>> c*8) & 0xff; for (var c=0; c<4; c++) counterBlock[15-c-4] = ((b/0x100000000-1) >>> c*8) & 0xff; var cipherCntr = Cipher(counterBlock, keySchedule); // encrypt counter block ciphertext[b] = unescCtrlChars(ciphertext[b]); var pt = ''; for (var i=0; i<ciphertext[b].length; i++) { // -- xor plaintext with ciphered counter byte-by-byte -- var ciphertextByte = ciphertext[b].charCodeAt(i); var plaintextByte = ciphertextByte ^ cipherCntr[i]; pt += String.fromCharCode(plaintextByte); } // pt is now plaintext for this block plaintext[b-1] = pt; // b-1 'cos no initial nonce block in plaintext } return plaintext.join(''); } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ function escCtrlChars(str) { // escape control chars which might cause problems handling ciphertext return str.replace(/[\0\t\n\v\f\r\xa0!-]/g, function(c) { return '!' + c.charCodeAt(0) + '!'; }); } // \xa0 to cater for bug in Firefox; include '-' to leave it free for use as a block marker function unescCtrlChars(str) { // unescape potentially problematic control characters return str.replace(/!\d\d?\d?!/g, function(c) { return String.fromCharCode(c.slice(1,-1)); }); } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ function encrypt(plaintext, password){ return AESEncryptCtr(plaintext, password, 256); } function decrypt(ciphertext, password){ return AESDecryptCtr(ciphertext, password, 256); } /* End AES Implementation */ var cmd = msg.substr(0,4); var arg = msg.substr(5); if(cmd == "encr"){ arg = eval("(" + arg + ")"); var plaintext = arg.plaintext; var password = arg.password; var results = encrypt(plaintext, password); gearsWorkerPool.sendMessage(String(results), sender); }else if(cmd == "decr"){ arg = eval("(" + arg + ")"); var ciphertext = arg.ciphertext; var password = arg.password; var results = decrypt(ciphertext, password); gearsWorkerPool.sendMessage(String(results), sender); } } }); }